The big picture: using wildflower strips for pest control
Drought is the factor worldwide that most limits crop production. New approaches are necessary to increase crop resilience without reducing maximum yield potential. We are considering the growth mechanisms and management of carbon budgets that regulate resilience, recovery and productivity under drought. In previous BBSRC-funded work we have discovered that trehalose 6-phosphate (T6P) can regulate both sucrose allocation and use of sucrose once allocated; T6P also prime gene expression for recovery from stress. In maize substantial yield improvements can be achieved through genetic modification (GM) of one trehalose pathway gene. Our strategy combines GM of trehalose pathway with natural variation in the International Maize and Wheat Improvement Center (CIMMYT) populations and the novel resurrection gene SDG8i involved in strigolactone glycosylation to improve drought tolerance during vegetative and reproductive growth in wheat. New mechanistic models, including data from RNA seq analysis, will propose a long-term strategy for productivity of wheat under drought involving knowledge exchange with CIMMYT and industry.
The importance of carbon budget management and growth mechanisms has been overlooked in the analysis of drought tolerance. Our related research in maize shows that substantial improvements can be obtained in the field through GM of one trehalose pathway gene. Our strategy combines GM with natural variation in the trehalose pathway and the novel resurrection gene SDG8i involved in strigolactone glycosylation to improve drought tolerance during vegetative and reproductive growth in wheat applicable to UK and to global regions where drought is prevalent.
The project will:
Plant Scientist
Head of Bioinformatics
Molecular Biologist - Biochemist
CIMMYT, Mexico